Silk: Optical Properties over 12.6 Octaves THz-IR-Visible-UV Range

نویسندگان

  • Armandas Balčytis
  • Meguya Ryu
  • Xuewen Wang
  • Fabio Novelli
  • Gediminas Seniutinas
  • Shan Du
  • Xungai Wang
  • Jingliang Li
  • Jeffrey Davis
  • Dominique Appadoo
  • Junko Morikawa
  • Saulius Juodkazis
چکیده

Domestic (Bombyx mori) and wild (Antheraea pernyi) silk fibers were characterised over a wide spectral range from THz 8 cm -1 ( λ = 1.25 mm, f = 0.24 THz) to deep-UV 50 × 10 3 cm - 1 ( λ = 200 nm, f = 1500 THz) wavelengths or over a 12.6 octave frequency range. Spectral features at β-sheet, α-coil and amorphous fibroin were analysed at different spectral ranges. Single fiber cross sections at mid-IR were used to determine spatial distribution of different silk constituents and revealed an α-coil rich core and more broadly spread β-sheets in natural silk fibers obtained from wild Antheraea pernyi moths. Low energy T-ray bands at 243 and 229 cm -1 were observed in crystalline fibers of domestic and wild silk fibers, respectively, and showed no spectral shift down to 78 K temperature. A distinct 20±4 cm-1 band was observed in the crystalline Antheraea pernyi silk fibers. Systematic analysis and assignment of the observed spectral bands is presented. Water solubility and biodegradability of silk, required for bio-medical and sensor applications, are directly inferred from specific spectral bands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THz-conductivity of CVD graphene on different substrates

Optoelectronic properties of CVD graphene are characterized over a wide frequency range: THz, IR, visible and near-UV. We used Raman spectroscopy to characterize the synthesized graphene films. All graphene layers were deposited on various substrates, some ones transparent or flexible, such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), quartz and silicon. Transmission Ter...

متن کامل

Amines and optical properties of Titan’s aerosols

This work deals with the optical characterization of Titan aerosol analogues or “tholins”. Those have been produced in different N2–CH4 gaseous mixtures to study the effect of the initial methane concentration on their optical properties. We studied the FIRand MID-IR absorption properties on the SMIS beamline of the French SOLEIL synchrotron. And we determined the UV-visible-near IF optical ind...

متن کامل

Synthesis and Characterization of Nano-Sized Hexagonal and Spherical Nanoparticles of Zinc Oxide

ZnO plays an important role in many semiconductors technological aspects.  Here,  direct  precipitation  method  was  employed  for  the synthesis of nano-sized hexagonal ZnO particles, which is based on chemical  reactions between  raw materials used  in  the  experiment. ZnO  nanoparticles  were  synthesized  by  calcinations  of  the  ZnO precursor precipitates  at 250  ˚C  for 3hours. ...

متن کامل

Ultrabroadband XFROG of few-cycle mid-infrared pulses by four-wave mixing in a gas

Cross-correlation frequency-resolved optical gating (XFROG) based on four-wave mixing (FWM) in a gas medium is shown to enable dispersion-free characterization of few-cycle mid-infrared (mid-IR) pulses tunable within a spectral range of more than two octaves. The FWMXFROG technique is used to measure spectra and pulse shapes, as well as to retrieve the phase of a few-cycle output of difference-...

متن کامل

Effect of annealing and UV illumination on properties of nanocrystalline ZnO thin films

ZnO thin films with preferred orientation along the (002) plane were prepared onto the glass substrates by the sol-gel spin coating method for different post- annealing temperatures. The XRD study confirms that the thin films grown by this method have good crystalline hexagonal wurtzite structure. The optical band gap of the samples was determined from UV-visible spectra. It is found that the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017